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Solutions to Problems

Refer to the problem set for instructions and point distribution.

Section A

1. If G is a finite group which contains exactly 24 elements of order 6, then the number of cyclic
subgroups of G having order 6 is (a) 6 (b) 12 (c) 18 (d) 24.

Answer: (b) 12.

Solution: We know that every cyclic group of order 6 has φ(6) = 2 generators. Note that
if H = 〈a〉 is a subgroup of order 6, then O(a) = 6. Thus, any cyclic subgroup of order 6
contains 2 elements of order 6 and any element of order 6 is in precisely one subgroup of that
order (namely the one it generates). Therefore the 24 elements of order 6 should be evenly
divided across subgroups and there are exactly 24

2 = 12 cyclic subgroups of order 6.

Contributed by : Sagnik S. ; Reference: [1]

2. Let A be 5× 5 matrix with real entries such that the sum of the entries in each row of A is
1. Then the sum of all entries in A3 is (a) 3 (b) 15 (c) 5 (d) 125.

Answer: (c) 5.

Solution: Note that if A = I, it is trivial. Assume that A 6= I, then note that corresponding
to the eigenvalue 1,

e =


1
1
1
1
1


is an eigenvector for the matrix A. ∴ Ae = e. Thus sum of all entries in A3 is

eTA3e = eTA2(Ae) = eTA2e = eTAe = eT e = 5

Contributed by : Anand C.

3. For complex values of x if

lim
x→0

x sin (
1

x
) = L

then (a) L = 0 (b) L = 1 (c) =(L) > 0 (d) the limit L doesn’t exist.

Remark: cos (iz) = cosh z, sin (iz) = i sinh z, =(z) = imaginary part of z.

Answer: (d) the limit L doesn’t exist.

Solution (sketch): Let x = a+ ib where (a, b) ∈ R2. Thus x→ 0 =⇒ (a, b) → (0, 0).

∴ L = lim
x→0

x sin (
1

x
) = lim

(a,b)→(0,0)
(a+ ib) sin (

a− ib

a2 + b2
)
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. Expanding, we obtain

L = lim
(a,b)→(0,0)

[(af(a, b) + bg(a, b)) + i(bf(a, b)− ag(a, b))]

where

f(a, b) =
1 + e

− 2b
a2+b2

2e
− b

a2+b2

sin (
a

a2 + b2
) ; g(a, b) =

1− e
− 2b

a2+b2

2e
− b

a2+b2

cos (
a

a2 + b2
)

From the above form of L we can conclude that the limit does not exist since its value will
depend on (a, b) path in complex space.

Remark : Note that for real values of x, the limit exists and is equal to 0.

Constructed by : Sagnik S.

4. Let f be a function defined on Z+ by f(1) = 1, f(2n) = 2f(n), f(2n+ 1) = 4f(n) ∀ n ∈ N.
Then the number of solutions to f(n) = 8 is (a) 1 (b) 5 (c) 3 (d) 9.

Answer: (c) 3.

Solution: First we show by induction that f(n) ≥ n ∀ n ∈ N. Then we check that for
1 ≤ n ≤ 8, there are only three solutions for f(n) = 8, viz. n = 5, 6, 8.

Contributed by : Anand C.

5. Given that, for the set S ⊂ C, if z ∈ S, then

|z − 1| = |z − i| = |z + 1|

On the complex plane, the set S geometrically represents a (a) triangle (b) pair of straight
lines (c) finite number of points (d) ellipse.

Answer: (c) finite number of points.

Solution: Assume |z − 1| = |z − i| = |z + 1| = r. Note that these equations successively
represent a circle of radius r centering points (1, 0), (0, i) and (−1, 0). Since three distinct
intersecting circles can only have a single common point, the number of solutions for z is
exactly one (and precisely z = 0).

Contributed by : Sagnik S.

6. If P (x) is a real valued non-constant polynomial then

lim
k→∞

P (k + 1)

P (k)

equals to (a) 1 (b) 0 (c) −1 (d) the leading coefficient of P (x) (e) doesn’t always converge.

Answer: (a) 1.

Solution:

lim
k→∞

P (k + 1)

P (k)
= lim

k→∞

∑n
r=0 ar(k + 1)r∑n

r=0 ark
r

= lim
k→∞

n∑
s=0

as(k + 1)s∑n
r=0 ark

r

= lim
k→∞

n∑
s=0

as

ankn−s( 1
1+ 1

k

)s + · · ·+ as(
1

1+ 1
k

)s + as−1

k ( 1
1+ 1

k

)s + · · ·+ a0

ks (
1

1+ 1
k

)s

=
an
an

= 1.

Contributed by : Anand C. ; Solution by : Sagnik S.
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7. The series
∞∑

n=0

(n+ 1)(x)n

(a) always diverges (b) is always bounded (c) always converges to (1 + x)−2

(d) converges to (1 + x)−2 only when |x| < 1
(e) converges to (1− x)−2 only when |x| < 1
(f) converges to x(1− x)−2 only when |x| < 1.

Answer: (e) converges to (1− x)−2 only when |x| < 1.

Solution: Note that,
∞∑

n=0

(n+ 1)xn =
d

dx

∞∑
n=0

xn+1

The geometric series
∑∞

n=0 x
n is finite only when |x| < 1, and it converges to x

1−x . Thus,

∞∑
n=0

(n+ 1)xn =
d

dx
(

x

1− x
) =

1

(1− x)2
, only when |x| < 1.

Contributed by : Sagnik S. ; Reference: [2]

8. If Morty has an infinite number of green, cyan, yellow and violet Pickle Ricks in a vessel, the
minimum number of Pickel Ricks Morty must take out of the vessel to guarantee he has a
pair of the same colored Pickle Ricks is (a) 2 (b) 4 (c) 5 (d) 6.

Answer: (c) 5.

Solution: Morty must pull 5 Pickle Ricks out of the drawer to guarantee he has a pair of the
same colored Pickle Ricks. We are using the Pigeonhole Principle. In this case the pigeons
are the Pickle Ricks he pulls out and the holes are the colors. Thus, if he pulls out 5 Pickle
Ricks, the Pigeonhole Principle assures that two of them have will the same color. Also, note
that it is possible to pull out 4 Pickle Ricks without obtaining a pair of same color.

Contributed by : Anand C. and Sagnik S. ; Reference: [3]

9. If n ≡ 1 (mod 2) and n ≥ 3, then the number of perfect squares mod 2n is (a) 2n−1+5
3 (b)

2n−1+4
3 (c) 2n−1+5

4 (d) 2n−1 + 5.

Answer: (a) 2n−1+5
3 .

Solution: Given that n ≡ 1 (mod 2) =⇒ n is an odd positive number. Let s(n) denote
the number of squares mod n and q(n) the number of quadratic residues mod n. Note that
it is known to us that q(2n) = 2n−3. Also for n = 3, s(23) = 3. We assume that the formula

s(2n) = 2n−1+5
3 holds true for all odd n ≤ 2k. We show that it holds for n = 2k + 1 as well.

We first trivially obtain the formula s(2n) = q(2n) + s(2n−2). Thus,

s(22k+1) = q(22k+1) + s(2(2k+1)−2) = 2(2k+1)−3 +
2[(2k+1)−2]−1 + 5

3
=

2n−1 + 5

3
.

Contributed by : Sagnik S. ; Reference: [4]

10. Let n ≥ 3 be an integer. Assume that inside a big circle, exactly n small circles of radius
r can be drawn so that each small circle touches the big circle and also touches both its
adjacent small circles. Then, the radius of the big circle is (a) r cosec(πn ) (b) r (1 + cosec 2π

n )
(c) r(1 + cosec π

2n ) (d) r(1 + cosecπ
n ).

Answer: (d) r(1 + cosecπ
n ).

Solution (sketch): Let s be the distance between the centre of the big circle and the centre
of (any) one of the small circles. Then there exists a right triangle with hypotenuse s, side r
and one angle π

n . The other side of the same triangle is a part of the radius of the big circle.
We can thus stare at the diagram and find that the radius of the big circle is r(1 + cosecπ

n ).

Contributed by : Sagnik S. ; Reference: [5]
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Section B

1. Prove that every positive integer n can be expressed as the sum of distinct terms in the
Fibonacci sequence.

Remark: The Fibonacci sequence is a sequence of numbers {Fn}∞n=1 defined by the linear
recurrence equation Fn = Fn−1 + Fn−2 with F1 = F2 = 1.

Solution: Let P (n) be the statement that “n can be expressed as the sum of distinct terms
in the Fibonacci sequence”. Note that P (1) is trivially true. Let P (n) be true for all n ≤ k,
we want to show that P (k + 1) is also true, and we will be done.
Now for P (k + 1), there are two cases:

Case 1 : k + 1 is itself a Fibonacci number. Then we are done.

Case 2 : k+1 is not a Fibonacci number. Then there exists a m ∈ N such that Fm < k+1 <
Fm+1. Since Fm < k+1, we have k+1 = Fm+(k+1)−Fm. Now (k+1)−Fm < k+1 =⇒
P ((k + 1) − Fm) is true by induction hypothesis. Let (k + 1) − Fm =

∑t
s=1 Fis , where all

Fj ’s are distinct. Since (k + 1) − Fm < Fm, we have Fis 6= Fm for any 1 ≤ s ≤ t. Thus,

(k + 1) = Fm +
∑t

s=1 Fis concludes that P (k + 1) is true.

Contributed by : Joyentanuj D. ; Reference: [6]

2. Construct a C∞ function f : R → R such that the integral
∫∞
−∞ |f | is finite but the series

sn =
∑n

k=0 f(k) diverges.

Remark: A C∞ function is a function that is differentiable for all degrees of differentiation.

Solution: Consider the function

φ(x) =


2x(x− n)+1 x ∈ (n− 1

2n , n), n ∈ N
2x(n− x)+1 x ∈ (n, n+ 1

2n ), n ∈ N
0 otherwise

Note that∫ ∞

−∞
|φ(x)|dx =

∞∑
k=0

1

2k
= 1 <∞ ; sn =

n∑
k=0

φ(k) =

n∑
k=0

1, which diverges.

.
Now we just have to make φ a C∞ function, without entirely changing the properties above.
To do this, we construct the following function and convolute φ with it to make φ smooth:

ψk(x) =

{
ck exp (|x|2 − 1

22k
)−1 |x| < 1

22k
, k ∈ N

0 otherwise

where ck = 1
2k
. Our final C∞ function f will therefore be:

f(x) =
∑

fk ; fk =

∫ ∞

−∞
φ(x− y)ψk(x)dy

Remark : Partial points will be given for only constructing the function φ.

Contributed by : Soham G. ; Solution by : Soham G. and Sagnik S. ; Reference: [7]

3. Find all odd positive integers n > 1 such that for any two coprime divisors a, b of n the
number (a+ b− 1) is also a divisor of n.

Solution: Let p be the least prime factor of n. Assume that ∃ a > 1 such that n = pma
and (a, p) = 1. Then (p − 1, a) = d = 1 (otherwise consider a prime divisor q > 1 of d,
q ≤ p− 1 < p and q|a, then q|n contradicting the minimality of p). ∴ (a, a+ p− 1) = 1.

Note that, a|n, p|n =⇒ (a+ p− 1)|n. Also notice that all the prime divisors of n except p
divide a from definition. Since (a + p − 1) divides n and is coprime with a, no other prime
but p divides it. So (a+ p− 1) = pb for some m ≥ b ∈ N.
Also a|n, pb|n =⇒ (a+ pb − 1) = (2a+ p− 2)|n. We can prove (2a+ p− 2) is coprime with
a and so (2a+ p− 2) = pc =⇒ 2pb−1 − 1 = pc−1. It’s not very hard to prove this equation
has a solution only if b = c = 1. But then we get (a+ p− 1) = p =⇒ a = 1, contradicting
with the definition of a. So such a can’t exist and therefore n = pm, (p odd) are the only
possible solutions of odd n ∈ Z.
Contributed by : Sagnik S. ; Solution by : Adib H. ; Reference: [8]
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Section C1

1. Can you continuously deform a 2-dimensional plane into a real line, or more mathematically,
is R homeomorphic to R2?
Is R2 homeomorphic to R3? Does the previous argument work here?
Can this be generalized? Is R2 homeomorphic to Rn for any n > 2?

Remark: A bijective continuous function f : X → Y between two topological spaces is a
homeomorphism if the inverse function f−1 is continuous.

Solution (sketch): R is not homeomorphic to R2. For the sake of argument, assume they
were. We know that connectedness is invariant under homeomorphism. If there would be a
homeomorphism f from R2 to R, we subtract a point from R2, for example, (0, 0) and R2 still
stays connected. By the property of f , f(R2 \ {(0, 0)}) is still connected, but f(R2 \ {(0, 0)})
is precisely R \ {a} for some a ∈ R, which is not connected.

R2 is not homeomorphic to R3 either. Here we would use the property that homeomorphic
spaces have the same fundamental groups, and will arrive at a contradiction for the spaces
R2 \ {(x, y)} and R3 \ {(x, y, z)}.
We can generalize this by the use of Brouwer’s fixed point theorem.

Contributed by : Adittya C.

2. For a non-negative integer r, prove the following combinatorial identity using any method,
preferably through a combinatorial argument:

r∑
k=0

(−1)k
(
n

k

)(
n

r − k

)
= (−1)[

r
2 ]

(
n

[ r2 ]

)
1 + (−1)r

2

where, [x] denotes the greatest integer less than or equal to x.

Solution (sketch): The above equation in question can be restated as:

r∑
k=0

(−1)k
(
n

k

)(
n

r − k

)
=

{
0 if r is odd

(-1)
r
2

(
n
r
2

)
if r is even

We now expand the expressions (1 + x)n(1− x)n and (1− x2)n and compare coefficients to
achieve the desired identity.

Contributed by : Joyentanuj D.

3. Determine whether the set of polynomials

P1(x) = (x− 1)(x− 2) · · · (x− n)− 1, n ≥ 1

P2(x) = (x− 1)(x− 2) · · · (x− n) + 1, n ≥ 5

are reducible over Z or not.

Remark: A polynomial f is said to be irreducible over a field F if f cannot be factored into
product of polynomials all of which have degree lower than f . If f is not irreducible over F
then we say that f is reducible over F.

Solution (sketch): Assume that P1(x) factorizes into P1(x) = Q1(x)R1(x). Note that

P1(i) = −1 ∀ i ∈ {1, 2, . . . , n} =⇒ Q1(i) = −R1(i) = ±1 ∀ i ∈ {1, 2, . . . , n}

So, Q1(x)+R1(x) has at least n zeros, despite their leading coefficients having the same sign.
This will create a contradiction.

Assume that P2(x) factorizes into P2(x) = Q2(x)R2(x). Note that

P1(i) = 1 ∀ i ∈ {1, 2, . . . , n} =⇒ Q1(i) = R1(i) = ±1 ∀ i ∈ {1, 2, . . . , n}

So, Q1(x) − R1(x) has at least n zeros. This tells us to deduce that P2(x) = [Q2(x)]
2 =⇒

n = 2k where k = deg Q2(x). Also, there are k values in {1, 2, . . . , 2k} at which P2(x) is 1
and k values at which P2(x) is −1. For k ≥ 3, WLOG, there will be some u ≥ 4 such that
u− 1 | P2(u)− P2(1) = −2, contradiction.

Contributed by : Ammu A.

5



Section C2

1. The sequence of averages of a real-valued sequence {xn} is defined by an =
∑n

i=1 xi

n . If {xn}
is a bounded sequence of real numbers, then show that

lim inf xn ≤ lim inf an ≤ lim sup an ≤ lim sup xn

Also show that {xn} → L =⇒ {an} → L and justify whether the converse is true or not.

Remark: For a real-valued sequence {sn}, if SN := {sn : n > N}, then lim sup sn =
limN→∞ supSN , lim inf sn = limN→∞ infSN . If {sn} is bounded, both the limits exist.

Solution: Lemma: For ε > 0, sk ≥ (lim sup sn+ε) and sk ≤ (lim inf sn−ε) for only finitely
many natural numbers k.

For a given bounded sequence of real numbers xn, fix ε > 0. Define l := lim sup xn and
consider the set K := {k ∈ N | xk ≥ l + ε}. Thus, by the Lemma, K is a finite set. Now
consider the following two disjoint sets:

Un := {i ∈ N | i ∈ K, i ≤ n} ; Tn := {i ∈ N | i /∈ K, i ≤ n}

such that Un

⋃
Tn = {1, 2, . . . , n}. Corresponding to these two sets, we define two sequences

{un} :=
∑

i∈Un
xi and {tn} :=

∑
i∈Tn

xi. Observe that an = un

n + tn
n . As K is a finite set,

{un} is eventually constant =⇒ un

n → 0 as n→ ∞. For i /∈ K, xk ≤ l + ε.

∴ tn =
∑
i∈Tn

xi ≤ n(l + ε) =⇒ tn
n

≤ l + ε ∀ n ∈ N

Thus,

lim sup an = lim sup (
un
n

+
tn
n
) ≤ lim sup

un
n

+ lim sup
tn
n

= 0 + l = lim sup xn

Similarly, lim inf xn ≤ lim inf an. And we already know that lim inf an ≤ lim sup an.
Now if {xn} → L, then

lim inf xn = lim sup xn = L =⇒ L ≤ lim inf an ≤ lim sup an ≤ L =⇒ {an} → L.

For disproving the converse, take {xn} = {(− 1)
n | n ∈ N}.

Here, {an} → L but {xn} doesn’t converge.

Contributed and solution by : Sharvari T.

2. You have coins C1, C2, . . . , Cm. For each r, coin Cr is biased, so that when tossed, it has
a probability of 1/(2r + 1) of falling in heads. If all the n coins are tossed, what is the
probability that the number of tails is even? Express the answer as a function of n.

Solution: Note that, when tossed, the coin Cr has a probability of (1− 1
2r+1 ) =

2r
2r+1 of falling

in tails. We first define the sequence Tr = 2r
2r+1 . For given n, let Pn := “probability that the

number of tails is even when all the n coins are tossed”. Thus, P0 = 1, P1 = 1−T1 = 1
3 . For

every n > 0 we find Pn by first flipping the first (n–1) coins, getting even number of tails
with probability Pn−1 and odd number of tails with probability (1−Pn−1). Then we flip the
coin Cn to get an even number of tails among n coins with probability

Pn = (1− Tn)Pn−1 + (1− Pn−1)Tn = Tn + (1− 2Tn)Pn−1 =
2n

2n+ 1
+ (

1− 2n

2n+ 1
)Pn−1

.
Solving the recurrence relation, we obtain:

Pn =
2n+ 1 + (−1)n

4n+ 2
.

Contributed by : Ananthakrishna G. and Sagnik S. ; Reference: [9]
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3. Let T be a linear operator on a vector space V (ie. T : V → V ) and λ be an eigenvalue for T .
Let Kλ be the generalised eigenspace wrt. λ, ie. Kλ := {v ∈ V | (T − λI)pv = 0, p ∈ Z+}.
(a) Show that Kλ is a T -invariant subspace.
(b) For any eigenvalue µ 6= λ, show that the function (T − µI) restricted to Kλ is one-one.

Remark: Let W be a subspace of V and T : V → V be a linear operator. Then W is called
T -invariant if T (W ) ⊂W .

Solution: (a) We have to show that T (Kλ) ⊂ Kλ. Let x ∈ Kλ, then we will show that
T (x) ∈ Kλ. Since T commutes with (T − λI)p, we obtain (T − λI)pT (x) = T (T − λI)p(x).
Thus (T − λI)pT (x) = T (0), since x ∈ Kλ =⇒ T (x) ∈ Kλ, since T (0) = 0.

(b) Let µ 6= λ be another eigenvalue. Assume (T − µI)x = 0 for some 0 6= x ∈ Kλ.
x ∈ Kλ =⇒ (T − λI)px = 0 for some p ∈ Z+. Let q denote the least integer such that
(T − λI)qx = 0. Denote y = (T − λI)q−1x =⇒ y 6= 0 and (T − λI)y = 0 =⇒ T (y) = λy.
Now (T − µI)y = (T − µI)(T − λI)q−1(x) = (T − λI)q−1(T − µI)(x) = 0 =⇒ T (y) = µy =
λy =⇒ µy − λy = 0 =⇒ (µ− λ)y = 0 =⇒ µ = λ, which is a contradiction. Thus, x = 0.
So, (T − µI) restricted to Kλ is one-one.

Contributed by : Kalin K.

Section D

1. You visit the Island of Moai in search of a mathematical treasure that was supposedly hid
by Pólya many years earlier and you came to know about recently. The treasure had no
importance to the island dwellers so they can give away its location once you ask them. But
after reaching the island, you find out from a magic sculpture signed by Pólya himself that
says that at any point of time, the island is inhabited by equal number of truth-tellers and
liars. In the island, everybody knows whether another person from the island is a truth-teller
or a liar. Your aim now is to identify a truth-teller in the island to get the correct information
about the treasure. You can only ask a person A about another person B whether B is a liar.

Let N be the smallest possible number of questions you need to ask in order to guarantee that
you find a truth-teller. Show that no such N exists and that you can never find a truth-teller
in finite amount of time to ask about the treasure.

Solution (sketch): Assume a condition where the Island of Moai is inhabited by only two
people, Adam and Eve. Also assume that Adam is a truth-teller and Eve, a liar. You ask
Adam if Eve is a liar, the answer is “yes”. Next you ask Eve if Adam is a liar, the answer is
also “yes”. Now switch their characters, keeping your question set same. The answers will
still be same. You will not be able distinguish a truth-teller. Now, change your questions,
ask one if the other is a liar and the other if this one is a truth-teller. You will end up with
the same dilemma as before. Now try to do this with more number of inhabitants on the
island. You will never find a finite value for N .

Remarks: The author guesses this puzzle can be solved with a number of different techniques
including Combinatorial Game Theory, Graph Theory, Induction, etc. Innovative solutions
are welcome.

Constructed by : Sagnik S. ; Reference: [10]
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